3 días - 18 horas


This Oracle Database 11g: Data Warehousing Fundamentals training will teach you about the basic concepts of a data warehouse. Explore the issues involved in planning, designing, building, populating and maintaining a successful data warehouse.


  1. Describe methods and tools for extracting, transforming, and loading data
  2. Identify some of the tools for accessing and analyzing warehouse data
  3. Identify the technology and some of the tools from Oracle to implement a successful data warehouse
  4. Define the decision support purpose and end goal of a data warehouse
  5. Describe the benefits of partitioning, parallel operations, materialized views, and query rewrite in a data warehouse
  6. Explain the implementation and organizational issues surrounding a data warehouse project
  7. Use materialized views and query rewrite to improve the data warehouse performance
  8. Define the terminology and explain the basic concepts of data warehousing
  9. Develop familiarity with some of the technologies required to implement a data warehouse

Contenidos del curso


  • Course Objectives

  • Course Schedule

  • Course Pre-requisites and Suggested Pre-requisites

  • The sh and dm Sample Schemas and Appendices Used in the Course

  • Class Account Information

  • SQL Environments and Data Warehousing Tools Used in this Course

  • Oracle 11g Data Warehousing and SQL Documentation and Oracle By Examples

  • Continuing Your Education: Recommended Follow-Up Classes

Data Warehousing, Business Intelligence, OLAP, and Data Mining

  • Data Warehouse Definition and Properties

  • Data Warehouses, Business Intelligence, Data Marts, and OLTP

  • Typical Data Warehouse Components

  • Warehouse Development Approaches

  • Extraction, Transformation, and Loading (ETL)

  • The Dimensional Model and Oracle OLAP

  • Oracle Data Mining

Defining Data Warehouse Concepts and Terminology

  • Data Warehouse Definition and Properties

  • Data Warehouse Versus OLTP

  • Data Warehouses Versus Data Marts

  • Typical Data Warehouse Components

  • Warehouse Development Approaches

  • Data Warehousing Process Components

  • Strategy Phase Deliverables

  • Introducing the Case Study: Roy Independent School District (RISD)

Business, Logical, Dimensional, and Physical Modeling

  • Data Warehouse Modeling Issues

  • Defining the Business Model

  • Defining the Logical Model

  • Defining the Dimensional Model

  • Defining the Physical Model: Star, Snowflake, and Third Normal Form

  • Fact and Dimension Tables Characteristics

  • Translating Business Dimensions into Dimension Tables

  • Translating Dimensional Model to Physical Model

Database Sizing, Storage, Performance, and Security Considerations

  • Database Sizing and Estimating and Validating the Database Size

  • Oracle Database Architectural Advantages

  • Data Partitioning

  • Indexing

  • Optimizing Star Queries: Tuning Star Queries

  • Parallelism

  • Security in Data Warehouses

  • Oracle’s Strategy for Data Warehouse Security

The ETL Process: Extracting Data

  • Extraction, Transformation, and Loading (ETL) Process

  • ETL: Tasks, Importance, and Cost

  • Extracting Data and Examining Data Sources

  • Mapping Data

  • Logical and Physical Extraction Methods

  • Extraction Techniques and Maintaining Extraction Metadata

  • Possible ETL Failures and Maintaining ETL Quality

  • Oracle’s ETL Tools: Oracle Warehouse Builder, SQL*Loader, and Data Pump

The ETL Process: Transforming Data

  • Transformation

  • Remote and Onsite Staging Models

  • Data Anomalies

  • Transformation Routines

  • Transforming Data: Problems and Solutions

  • Quality Data: Importance and Benefits

  • Transformation Techniques and Tools

  • Maintaining Transformation Metadata

The ETL Process: Loading Data

  • Loading Data into the Warehouse

  • Transportation Using Flat Files, Distributed Systems, and Transportable Tablespaces

  • Data Refresh Models: Extract Processing Environment

  • Building the Loading Process

  • Data Granularity

  • Loading Techniques Provided by Oracle

  • Postprocessing of Loaded Data

  • Indexing and Sorting Data and Verifying Data Integrity

Refreshing the Warehouse Data

  • Developing a Refresh Strategy for Capturing Changed Data

  • User Requirements and Assistance

  • Load Window Requirements

  • Planning and Scheduling the Load Window

  • Capturing Changed Data for Refresh

  • Time- and Date-Stamping, Database triggers, and Database Logs

  • Applying the Changes to Data

  • Final Tasks

Materialized Views

  • Using Summaries to Improve Performance

  • Using Materialized Views for Summary Management

  • Types of Materialized Views

  • Build Modes and Refresh Modes

  • Query Rewrite: Overview

  • Cost-Based Query Rewrite Process

  • Working With Dimensions and Hierarchies

Leaving a Metadata Trail

  • Defining Warehouse Metadata

  • Metadata Users and Types

  • Examining Metadata: ETL Metadata

  • Extraction, Transformation, and Loading Metadata

  • Defining Metadata Goals and Intended Usage

  • Identifying Target Metadata Users and Choosing Metadata Tools and Techniques

  • Integrating Multiple Sets of Metadata

  • Managing Changes to Metadata

Data Warehouse Implementation Considerations

  • Project Management

  • Requirements Specification or Definition

  • Logical, Dimensional, and Physical Data Models

  • Data Warehouse Architecture

  • ETL, Reporting, and Security Considerations

  • Metadata Management

  • Testing the Implementation and Post Implementation Change Management

  • Some Useful Resources and White Papers

Información extra

Learn To:

  • Define the terminology and explain basic concepts of data warehousing.
  • Identify the technology and some of the tools from Oracle to implement a successful data warehouse.
  • Describe methods and tools for extracting, transforming and loading data.
  • Identify some of the tools for accessing and analyzing warehouse data.
  • Describe the benefits of partitioning, parallel operations, materialized views and query rewrite in a data warehouse.
  • Explain the implementation and organizational issues surrounding a data warehouse project.
  • Improve performance or manageability in a data warehouse using various Oracle Database features.

Benefits to You

Oracle’s Database Partitioning Architecture
You'll also explore the basics of Oracle’s Database partitioning architecture, identifying the benefits of partitioning.
Review the benefits of parallel operations to reduce response time for data-intensive operations. Learn how to extract, transform and load data (ETL) into an Oracle database warehouse.
Improve Data Warehouse Performance
Learn the benefits of using Oracle’s materialized views to improve the data warehouse performance. Instructors will give a high-level overview of how query rewrites can improve a query’s performance. Explore OLAP and Data Mining and identify some data warehouse implementations considerations.
Use Data Warehousing Tools
During this training, you'll briefly use some of the available data warehousing tools. These tools include Oracle Warehouse Builder, Analytic Workspace Manager and Oracle Application Express.


Application Developers

Data Warehouse Administrator

Data Warehouse Analyst

Data Warehouse Developer


Functional Implementer

Project Manager

Support Engineer

Required Prerequisites

  • Knowledge of client-server technology (Suggested Prerequisite)
  • Knowledge of general data warehousing concepts (Suggested Prerequisite)
  • Knowledge of relational server technology (Suggested Prerequisite)

Información general

Área formativa

Oracle BI - Datawarehousing - Data Mining






Propia del fabricante

Garantía juvenil



He leído y acepto la del sitio y las condiciones de tratamiento de mis datos de carácter personal



Fecha y precios de nuestros cursos

Fecha Horario de impartición Ubicación Precio por alumno Previsto en fecha
10 Sep 2019
De 9:00 a 15:00 h.
Core Madrid
1287€ + IVA
10 Dec 2019
De 9.00 a 15.00h
Core Madrid
1287€ + IVA

¿Necesitas Ayuda?

Consúltanos si necesitas información de nuestros cursos o masters.


Contacta con Core Networks